114 research outputs found

    A physical model for PDZ-domain/peptide interactions

    Get PDF
    The PDZ domain is an interaction motif that recognizes and binds the C-terminal peptides of target proteins. PDZ domains are ubiquitous in nature and help assemble multiprotein complexes that control cellular organization and signaling cascades. We present an optimized energy function to predict the binding free energy (ΔΔG) of PDZ domain/peptide interactions computationally. Geometry-optimized models of PDZ domain/peptide interfaces were built using Rosetta, and protein and peptide side chain and backbone degrees of freedom are minimized simultaneously. Using leave-one-out cross-validation, Rosetta’s energy function is adjusted to reproduce experimentally determined ΔΔG values with a correlation coefficient of 0.66 and a standard deviation of 0.79 kcal mol−1. The energy function places an increased weight on hydrogen bonding interactions when compared to a previously developed method to analyze protein/protein interactions. Binding free enthalpies (ΔΔH) and entropies (ΔS) are predicted with reduced accuracies of R = 0.60 and R = 0.17, respectively. The computational method improves prediction of PDZ domain specificity from sequence and allows design of novel PDZ domain/peptide interactions

    Investigation of indium-rich InGaN alloys and kinetic growth regime of GaN

    Get PDF
    Nowadays, light emitting diodes (LEDs) and laser diodes (LDs) are part of our daily life. More and more devices incorporate InGaN-based optoelectronic devices. In fact, since the first demonstration of a candela-class InGaN-based LED in the beginning of the nineties, those LEDs have quickly become popular. The efficiency of blue InGaN LEDs is nowadays very high and when coated with a yellow phosphor, they can efficiently emit white light. Such white LEDs are more and more used for different lighting applications, from home lighting to car lighting. Another application of blue InGaN emitters that is found in many households is the Blu-ray disc, based on a 405 nm LD. The great success of the III-nitrides in the blue range created a strong interest to extend the wavelength range into the green, as efficient green emitters are missing. However, their performance is still low compared to their blue counterparts. The goal of this dissertation is to investigate issues that limit the performance of green InGaN LEDs and LDs. To achieve efficient green emission, the growth temperature needs to be reduced to incorporate more indium into the active region. In this context, the present study is divided into two parts. In the first one, the growth regime of GaN as a function of the temperature is investigated and the physical origin of the surface features is discussed. When lowering the temperature, the so called Ehrlich-Schwöbel barrier, a barrier at the step-edges, causes a different attachment probability for the adatoms arriving from the different sides. This asymmetry can lead to the appearance of three different kinetic surface morphologies: hillocks, fingers, or step-bunching. After presenting the theory, the three different regimes are demonstrated for GaN, and the growth parameters that allow to control the morphology are investigated. Indeed, the different morphologies usually reported for the different growth techniques can be attributed to the different growth parameters commonly used. In the end of the first part, the influence of the underlaying morphology on the properties of the active region of an LED is discussed. In the second part, the impact of the thermal budget on the properties of InGaN quantum wells (QWs) is discussed. Active regions with a high In content can degrade easily when the p-type layer is grown on top, due to being exposed to a too high thermal budget. This is especially critical for green LDs which require thick cladding layers, i.e. a long growth time. The origin of the degradation and the parameters influencing it are discussed first: when an In-rich QW is annealed at a too high temperature, its emission intensity is reduced and dark spots appear on PL maps. The annealing temperature causing this degradation depends on the indium content, the QW thickness and the number of QWs. It is shown that these dark spots exhibit a peculiar emission spectra, with a characteristic emission at 2.75 eV. This emission is tentatively attributed to nitrogen vacancies that are created by the formation of metallic indium clusters in the active region. Then the focus is laid on the beneficial effects that can take place when an In-rich active region is exposed to a moderate thermal budget. Apart from reducing the linewidth of the emission, a strong improvement in photoluminescence intensity can be achieved. This improvement increases for high indium content QWs, i.e. when the growth temperature is low. In fact, this improvement is more pronounced for molecular beam epitaxy grown structures whose active regions are grown at a much lower temperatures than their metal organic vapor phase epitaxy counterparts. This is tentatively ascribed to the reduction of point defects by thermal annealing. As a consequence, a moderate annealing can be beneficial for both to reduce the non-radiative recombinations and the linewidth. It is finally proposed to perform a short annealing step of high indium content QWs before growing the p-type (cladding) layer at low temperature

    Conformational Changes of CaMKII: A Model of Activation

    Get PDF

    Practically Useful: What the Rosetta Protein Modeling Suite Can Do for You

    Get PDF
    The objective of this review is to enable researchers to use the software package ROSETTA for biochemical and biomedicinal studies. We provide a brief review of the six most frequent research problems tackled with ROSETTA. For each of these six tasks, we provide a tutorial that illustrates a basic ROSETTA protocol. The ROSETTA method was originally developed for de novo protein structure prediction and is regularly one of the best performers in the community-wide biennial Critical Assessment of Structure Prediction. Predictions for protein domains with fewer than 125 amino acids regularly have a backbone root-mean-square deviation of better than 5.0 A Ëš. More impressively, there are several cases in which ROSETTA has been used to predict structures with atomic level accuracy better than 2.5 A Ëš. In addition to de novo structure prediction, ROSETTA also has methods for molecular docking, homology modeling, determining protein structures from sparse experimental NMR or EPR data, and protein design. ROSETTA has been used to accurately design a novel protein structure, predict the structure of protein-protein complexes, design altered specificity protein-protein and protein-DNA interactions, and stabilize proteins and protein complexes. Most recently, ROSETTA has been used to solve the X-ray crystallographic phase problem. ROSETTA is a unified software package for protein structure prediction and functional design. It has been used to predic

    Diagnosis of obstructive coronary artery disease using computed tomography angiography in patients with stable chest pain depending on clinical probability and in clinically important subgroups: meta-analysis of individual patient data

    Get PDF
    OBJECTIVE: To determine whether coronary computed tomography angiography (CTA) should be performed in patients with any clinical probability of coronary artery disease (CAD), and whether the diagnostic performance differs between subgroups of patients. DESIGN: Prospectively designed meta-analysis of individual patient data from prospective diagnostic accuracy studies. DATA SOURCES: Medline, Embase, and Web of Science for published studies. Unpublished studies were identified via direct contact with participating investigators. ELIGIBILITY CRITERIA FOR SELECTING STUDIES: Prospective diagnostic accuracy studies that compared coronary CTA with coronary angiography as the reference standard, using at least a 50% diameter reduction as a cutoff value for obstructive CAD. All patients needed to have a clinical indication for coronary angiography due to suspected CAD, and both tests had to be performed in all patients. Results had to be provided using 2×2 or 3×2 cross tabulations for the comparison of CTA with coronary angiography. Primary outcomes were the positive and negative predictive values of CTA as a function of clinical pretest probability of obstructive CAD, analysed by a generalised linear mixed model; calculations were performed including and excluding non-diagnostic CTA results. The no-treat/treat threshold model was used to determine the range of appropriate pretest probabilities for CTA. The threshold model was based on obtained post-test probabilities of less than 15% in case of negative CTA and above 50% in case of positive CTA. Sex, angina pectoris type, age, and number of computed tomography detector rows were used as clinical variables to analyse the diagnostic performance in relevant subgroups. RESULTS: Individual patient data from 5332 patients from 65 prospective diagnostic accuracy studies were retrieved. For a pretest probability range of 7-67%, the treat threshold of more than 50% and the no-treat threshold of less than 15% post-test probability were obtained using CTA. At a pretest probability of 7%, the positive predictive value of CTA was 50.9% (95% confidence interval 43.3% to 57.7%) and the negative predictive value of CTA was 97.8% (96.4% to 98.7%); corresponding values at a pretest probability of 67% were 82.7% (78.3% to 86.2%) and 85.0% (80.2% to 88.9%), respectively. The overall sensitivity of CTA was 95.2% (92.6% to 96.9%) and the specificity was 79.2% (74.9% to 82.9%). CTA using more than 64 detector rows was associated with a higher empirical sensitivity than CTA using up to 64 rows (93.4% v 86.5%, P=0.002) and specificity (84.4% v 72.6%, P<0.001). The area under the receiver-operating-characteristic curve for CTA was 0.897 (0.889 to 0.906), and the diagnostic performance of CTA was slightly lower in women than in with men (area under the curve 0.874 (0.858 to 0.890) v 0.907 (0.897 to 0.916), P<0.001). The diagnostic performance of CTA was slightly lower in patients older than 75 (0.864 (0.834 to 0.894), P=0.018 v all other age groups) and was not significantly influenced by angina pectoris type (typical angina 0.895 (0.873 to 0.917), atypical angina 0.898 (0.884 to 0.913), non-anginal chest pain 0.884 (0.870 to 0.899), other chest discomfort 0.915 (0.897 to 0.934)). CONCLUSIONS: In a no-treat/treat threshold model, the diagnosis of obstructive CAD using coronary CTA in patients with stable chest pain was most accurate when the clinical pretest probability was between 7% and 67%. Performance of CTA was not influenced by the angina pectoris type and was slightly higher in men and lower in older patients. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42012002780

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    Diagnosis of obstructive coronary artery disease using computed tomography angiography in patients with stable chest pain depending on clinical probability and in clinically important subgroups: Meta-analysis of individual patient data

    Get PDF
    Objective To determine whether coronary computed tomography angiography (CTA) should be performed in patients with any clinical probability of coronary artery disease (CAD), and whether the diagnostic performance differs between subgroups of patients. Design Prospectively designed meta-analysis of individual patient data from prospective diagnostic accuracy studies. Data sources Medline, Embase, and Web of Science for published studies. Unpublished studies were identified via direct contact with participating investigators. Eligibility criteria for selecting studies Prospective diagnostic accuracy studies that compared coronary CTA with coronary angiography as the reference standard, using at least a 50% diameter reduction as a cutoff value for obstructive CAD. All patients needed to have a clinical indication for coronary angiography due to suspected CAD, and both tests had to be performed in all patients. Results had to be provided using 2×2 or 3×2 cross tabulations for the comparison of CTA with coronary angiography. Primary outcomes were the positive and negative predictive values of CTA as a function of clinical pretest probability of obstructive CAD, analysed by a generalised linear mixed model; calculations were performed including and excluding non-diagnostic CTA results. The no-treat/treat threshold model was used to determine the range of appropriate pretest probabilities for CTA. The threshold model was based on obtained post-test probabilities of less than 15% in case of negative CTA and above 50% in case of positive CTA. Sex, angina pectoris type, age, and number of computed tomography detector rows were used as clinical variables to analyse the diagnostic performance in relevant subgroups. Results Individual patient data from 5332 patients from 65 prospective diagnostic accuracy studies were retrieved. For a pretest probability range of 7-67%, the treat threshold of more than 50% and the no-treat threshold of less than 15% post-test probability were obtained using CTA. At a pretest probability of 7%, the positive predictive value of CTA was 50.9% (95% confidence interval 43.3% to 57.7%) and the negative predictive value of CTA was 97.8% (96.4% to 98.7%); corresponding values at a pretest probability of 67% were 82.7% (78.3% to 86.2%) and 85.0% (80.2% to 88.9%), respectively. The overall sensitivity of CTA was 95.2% (92.6% to 96.9%) and the specificity was 79.2% (74.9% to 82.9%). CTA using more than 64 detector rows was associated with a higher empirical sensitivity than CTA using up to 64 rows (93.4% v 86.5%, P=0.002) and specificity (84.4% v 72.6%, P<0.001). The area under the receiver-operating-characteristic curve for CTA was 0.897 (0.889 to 0.906), and the diagnostic performance of CTA was slightly lower in women than in with men (area under the curve 0.874 (0.858 to 0.890) v 0.907 (0.897 to 0.916), P<0.001). The diagnostic performance of CTA was slightly lower in patients older than 75 (0.864 (0.834 to 0.894), P=0.018 v all other age groups) and was not significantly influenced by angina pectoris type (typical angina 0.895 (0.873 to 0.917), atypical angina 0.898 (0.884 to 0.913), non-anginal chest pain 0.884 (0.870 to 0.899), other chest discomfort 0.915 (0.897 to 0.934)). Conclusions In a no-treat/treat threshold model, the diagnosis of obstructive CAD using coronary CTA in patients with stable chest pain was most accurate when the clinical pretest probability was between 7% and 67%. Performance of CTA was not influenced by the angina pectoris type and was slightly higher in men and lower in older patients. Systematic review registration PROSPERO CRD42012002780

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    Using RosettaLigand for Small Molecule Docking into Comparative Models

    Get PDF
    <div><p>Computational small molecule docking into comparative models of proteins is widely used to query protein function and in the development of small molecule therapeutics. We benchmark RosettaLigand docking into comparative models for nine proteins built during CASP8 that contain ligands. We supplement the study with 21 additional protein/ligand complexes to cover a wider space of chemotypes. During a full docking run in 21 of the 30 cases, RosettaLigand successfully found a native-like binding mode among the top ten scoring binding modes. From the benchmark cases we find that careful template selection based on ligand occupancy provides the best chance of success while overall sequence identity between template and target do not appear to improve results. We also find that binding energy normalized by atom number is often less than −0.4 in native-like binding modes.</p> </div
    • …
    corecore